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Nearly logarithmic decay is identified in the data for the mean-squared displacement of the colloidal hard-
sphere system at the liquid-glass transitionfW. van Megenet al., Phys. Rev. E58, 6073s1998dg. The solutions
of the mode-coupling theory for the microscopic equations of motion fit the experimental data well. Based on
these equations, the nearly logarithmic decay is explained as the equivalent of ab-peak phenomenon, a
manifestation of the critical relaxation when the coupling between of the probe variable and the density
fluctuations is strong. In an asymptotic expansion, a Cole-Cole formula including corrections is derived from
the microscopic equations of motion, which describes the experimental data for three decades in time.
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The transition of a fluid to a glass is accompanied by a
dramatic slowing down of the dynamics as the system ap-
proaches the transition pointf1g. The correlation function for
some variableA, fAstd=kA*stdAl / kuAu2l, with k l denoting ca-
nonical averaging, decays rapidly, typically within a time
increase by a factor of 10 in the normal fluid regime, while it
stretches over orders of magnitude in times close to a glass
transition. Simultaneously nontrivial dynamical features such
as power-law decay and unconventional scaling are ob-
served. The characterization and explanation of these signa-
tures of the glass transition present challenges to experiment,
computer simulation, and theory alike. One such feature is
the nearly logarithmic decay of the correlation function,
which was discovered recently in the orientational correla-
tion function by optical-Kerr-effectsOKEd measurements in
molecular liquidsf2g. The response function measured in
these experiments is proportional to the negative time deriva-
tive of the correlation function, so a measured nearlyt−1

decay is equivalent to a nearly logarithmic relaxation in
fAstd. In a subsequent fit it was shown that the data can be
well described by a schematic model within the mode-
coupling sMCTd theory for ideal glass transitionsf3g. The
nearly logarithmic decay was interpreted as ab-peak phe-
nomenon of the short-time critical relaxation when the
rotation-translation coupling is sufficiently large. Different
from earlier suggestions, the presence of higher-order glass
transitions, as in systems with very short-ranged attractions
f4g, could be ruled out as a cause for the nearly logarithmic
decay in molecular systems. Similar OKE data were fitted by
a kinetically constrained modelf5g.

Schematic models are truncated versions of the full MCT
equations of motion that share the mathematical structure
and universal properties of the latter but do not contain mi-
croscopic detailsf6g. Instead, a number of parameters in the
schematic models need to be fitted. In the microscopic equa-
tions, these parameters are completely determined by the
number densityr=N/V for a system ofN particles in a vol-
umeV, and the static structure factorSq given by the inter-
action potentialf6–8g. In the following, a system of hard
spheres of diameterd shall be discussed, where the only
control parameter is the packing fractionw=prd3/6. Predic-
tions for the hard-sphere systemsHSSd can be tested in col-
loidal suspensions, and the results for collective density fluc-
tuations demonstrate the universal laws of MCT and verify

certain characteristic parameters of the theoryf9g. The
tagged particle dynamics was analyzed recently in a
computer-simulation study showing good agreement with
MCT f10g.

A particularly informative quantity to be studied in a
system that shows structural relaxation is the mean-squared
displacement sMSDd, which is defined by dr2std
=kurWstd−rWs0du2l with rWstd denoting the position of a particle at
time t. The MSD is studied frequently in computer simula-
tion and was measured for nine decades in time in a colloidal
suspensionf11g. In this paper, the MSD will be calculated for
the HSS within MCT in order to show that for a state near
the glass transition there is a window of two decades in time
of nearly logarithmic relaxation. This will be done by iden-
tifying a t−1 decay of the derivative of the MSD in complete
analogy to the procedure used for the analysis of the corre-
sponding result for the OKE dataf2g. Second, by asymptotic
solution of the MCT equations, a modified Cole-Cole law
will be derived for the description of the critical decay of the
MSD. This analytical formula explains the nearly logarith-
mic regime and accounts for the critical decay for three de-
cades in time. Third, it will be shown that the MCT solutions
at the critical point describe the experimental result inf11g
for five orders of magnitude in time. Fourth, the full range of
available experimental data for the MSD is described reason-
ably by the numerical solutions of the MCT equations going
beyond the universal laws. Thus nearly logarithmic decay
laws known from molecular systems asb-peak phenomenon
are established in a colloidal system.

Slow dynamics within MCT originates from a singularity
in the long-time behavior of the collective density fluctua-
tions f8g. Other variables share that behavior if they are
coupled to the density fluctuations. While the coupling to
rotational motion was modeled by an empirical parameter in
f3g, the MSD for a colloidal system is given by a micro-
scopic equation of motion byf12g,

dr2std + D0
sE

0

t

dt8ms0dst − t8ddr2st8d = 6D0
st, s1ad

with the short-time diffusion coefficientD0
s. The memory

kernel ms0dstd is determined by the static structure of the
liquid and collective and single density correlation functions.
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The structure factor is calculated using the Percus-Yevick
approximationsPYAd f7g; details of the numerical solution
are outlined elsewheref12g. For w below the critical point
wc=0.5159, the long-time solution of Eq.s1ad is diffusive,
dr2std=6Dst, with a long-time diffusion coefficientDs de-
pending on the distance from the critical point. Forwùwc,
the long-time solution is arrested at a plateaudr2std=6rs

2,
with a localization lengthrs. The derivative of the MSD can
be interpreted as a time-dependent diffusion coefficient,
6Dstd=dfdr2std /d2g /dt, that goes to zero as the glass transi-
tion is approachedf13g. Dstd calculated from Eq.s1ad is
plotted for w=0.5145 andw=wc as full lines in Fig. 1. The
dynamics when approaching the critical point shares more
and more of the relaxation atwc as seen forw=0.5145 for
log10 t,1. This portion of the dynamics is therefore referred
to ascritical relaxation. For times exceeding the critical re-
laxation, the dynamics crosses over to the long-time diffu-
sion as seen forw=0.5145 around log10 t<2. The most sig-
nificant finding in connection with Fig. 1 is the appearance of
a window in time after the transient where the dynamics
follows closely at−1 law for 0ø log10 tø2. A comparison of
the solution forw=0.5145 with the critical decay shows that
the major fraction of thet−1 decay is part of the critical
relaxation. This decay reflects the same behavior as found in
molecular liquids, moreover, the decay observed in Fig. 1 is
closer tot−1 than for most of the OKE data wheret−x is seen
with x ranging from 0.8 to 1.15f2,3g. The long-time decay at
the critical point is at−a law with a=0.312 for the HSS. This
law is shown as the dotted straight line of slope −s1+ad. It
accounts for the critical decay only for log10 tù3, is pre-
ceeded by thet−1 decay, and has no relevance forw
=0.5145.

The nearly logarithmic decay is found adjacent to the
transient for the Brownian colloidal system as for the New-
tonian molecular systemsf3g. For the HSS also, Newtonian
dynamics can be considered and the equivalent of Eq.s1ad
readsf14g

]tdr2std + vs
2E

0

t

dt8ms0dst − t8ddr2st8d = 6vs
2t, s1bd

with the thermal velocityvs
2 for a tagged particle. Figure 2

shows the solution for the MSD for Newtonian and Brown-
ian dynamics forw=wc. Both solutions can be matched at
long times and they overlap down todr2std<0.01 defining
the beginning of the regime for structural relaxation at
log10 t<0 f14g. The nearly logarithmic decay is shown as the
nearly linear increase of the MSD with logt outside the tran-
sient within the same time interval as marked by the dashed
line in Fig. 1.

To further analyze the window of nearly logarithmic re-
laxation and in an attempt to distinguish it from a further
approximation to a power law with a very small exponent as
in f15g, asymptotic expansions shall be applied. At the criti-
cal point, the MSD can be expanded in power laws and reads
f12g

dr2std/6 = rs
c2 − hMSDst/t0d−a + hMSDKMSDst/t0d−2a, s2d

where the first two terms on the right-hand side constitute the
leading-order result. The values for the HSS arers

c=0.0746,
hMSD=0.0116,KMSD=−1.23, t0=0.425,l=0.735. The lead-
ing and next-to-leading order results of Eq.s2d are shown as
dotted and dashed lines in Fig. 2 and describe the full solu-
tions only for t*1000 andt*100, respectively. As will be
shown below, the leading order fails to apply in the experi-
mentally relevant window, while including the correction
still does not explain more than one decade of structural
relaxation.

In the following, an asymptotic solution is derived that is
based on the expansion of the memory kernel. For long
times, the equations of motion for the MSD are the same for

FIG. 1. sColor online.d Time derivative of the mean-squared
displacementDstd in the hard-sphere system for packing fractions
w=wc and w=0.5145 sfull lines from left to rightd. The upper
dashed line is proportional tot−1. The lower dashed curve repre-
sents the approximation by Eq.s4d. The dotted line displays the
critical law t−a−1. Here and in Fig. 2 the unit of time is fixed by the
short-time diffusion coefficientD0

s /d2=1/160. The inset shows
Dstd for w=wc on a linear scale for comparison.

FIG. 2. sColor online.d Mean-squared displacement at the criti-
cal point in the hard-sphere system for NewtoniansN, chain curved
and BrowniansB, full curved dynamics. The short horizontal line
displays the plateau 6rs

c2. The dashed lines show the asymptotic
approximations by Eqs.s2d slabeledt−2ad ands4d. The leading-order
approximations are shown dotted for Eq.s2d st−ad and Eq.s4d sccd.
The nearly logarithmic relaxation is shown by the straight dashed
line labeled lnt. The diamond and the square indicate 10% devia-
tions of B from the approximation by Eq.s4d and the solution for
w=0.5145, respectively.
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both Newtonian and Brownian dynamicsf6,14g, and can be
represented with the modified Laplace transformSffstdgszd
= ize0

`dt expfiztgfstd as

Sfdr2stdgszd =
6

Sfms0dstdgszd
. s3d

An asymptotic expansion for the memory kernel equivalent
to the one in Eq.s2d is given byms0dstd= fms0d

c +hms0dst / t0d−a

+hms0dKms0dst / t0d−2a, with fms0d
c =1/rs

c2, hms0d=hMSD/ rs
c4, Kms0d

=KMSD+lhMSD/ rs
c2, and l=Gs1−ad2/Gs1−2ad with the

Euler gamma functionGsxd. In the Laplace domain, this
can be written with a characteristic frequencyvb as
Sfms0dstdgszd= fms0d

c h1+s−iz/vbda+KMSD
cc s−iz/vbd2aj, where

KMSD
cc = fms0d

c Kms0d / shms0dld. Hence, Eq.s3d reads up to next-to-
leading order

Sfdr2stdgszd =
6rs

c2

1 + s− iz/vbda + KMSD
cc s− iz/vbd2a , s4d

and the characteristic frequency is given by

vb =
1

t0
F rs

c2

hMSD

1

Gs1 − adG1/a

.

For the HSS we gett0vb=0.038 95. The leading-order result
in Eq. s4d is obtained forKMSD

cc =0, and is known as Cole-
Cole law. For different variables a similar result was ob-
tained beforef3,16g. While the correction in Eq.s2d is com-
parably large,KMSD=−1.23, the analogous result for the
memory kernel is only a fraction of it,Kms0d=0.30. The cor-
rection in Eq.s4d is even smaller,KMSD

cc =0.196. As the cor-
rections determine the range of validity for the leading terms
of the asymptotic expansions, the leading-order result of Eq.
s4d is superior to the leading-order result of Eq.s2d as seen in
Fig. 2, where already the leading order of Eq.s4d describes
qualitatively the complete relaxation. Including the correc-
tion explains the complete window of structural relaxation as
seen by the diamond marking a 10% deviation of the ap-
proximation by Eq.s4d from the solution of Eq.s1ad. A com-
parison in Fig. 1 shows that Eq.s4d also covers the complete
regime of nearly logarithmic decay. Forw=0.5145,Dstd in
Fig. 1 and the MSD in Fig. 2 is described by Eq.s4d for
log10 t&3. The crossover from the critical decay to the long-
time diffusion yields an extended window in time where lnt
fits the solution.

Figure 3 shows the data fromf11g in units of the particle
radius R=d/2 and the Brownian time scaletb=R2/ s6D0

sd
together with the solutions of Eq.s1ad for different values of
w. The agreement is rather satisfactory considering that all
coupling parameters are fixed microscopically. Three adjust-
ments need to be made to match experimental and theoretical
curves. First, the short-time diffusion coefficient sets an
overall time scale that needs to be accounted for. The theo-
retical solutions are matched to the data for log10 t&−1. As
the experimental curves do not fall on top of each other in
that regime, the chosen time scale also needs to vary by a
factor up to 2. Second, withwc<0.58 f11,17g, the experi-
mental glass transition in the HSS is found at approximately

a 12% higher packing fraction than predicted in Refs.f8,12g.
This discrepancy could be reduced to below 10% by using
the actual structure factor rather than the PYA in a computer
simulation f18g, but a remaining error from the mode-
coupling approximation has to be accepted. This is similar to
other approaches fitting the dataf19g. Therefore, theoretical
values forw are mapped on experimental ones by comparing
the diffusivity in experiment and theory. The result of this
procedure is shown in the inset of Fig. 3 by circles. The
mapping is fitted bywtheo=0.87wexp+0.023, which is remark-
ably similar to what was found from a computer simulation
of the HSSf10g, and extrapolates to a critical densitywc

<0.57. The highest values ofw do not follow that linear
mapping. This is due to aging for log10 t /tb*4, where the
experiment is no longer fully equilibratedf11,17g. The dy-
namics before aging sets in, and hence the regime for nearly
logarithmic relaxation, is not affected significantly by aging
f17g. Third, as the actual transition takes place at a higher
packing fraction than theory predicts, a smaller localization
length and hence a vertical shift of the curves by a prefactor
ay—shown by crosses in the inset of Fig. 3—can be ex-
pected. Surprisingly, many curves are described well using
ay=1. The variation ofay yields an error estimate for the
localization length of around 20% for the localization length
as compared to the theoretical results. If only data close to
the glass transition is considered, the data show indeed a
smaller localization length than predicted. After these adjust-
ments, Eq.s1ad fits the data for different packing fractions
over the entire experimental range of up to nine orders of
magnitude in time.

The curvewexp=0.583 is fitted bywtheo=0.5146, and in
addition, the critical relaxation forwtheo=wc is matched with
the same prefactors and shown dotted. The data follow

FIG. 3. sColor online.d Fit of the mean-squared-displacement
data fromf11g sfull circles and curvesd by the solutions of mode-
coupling theorysdashedd. The dotted curve displays the theoretical
result at the critical point and is equivalent to curveB in Fig. 2. The
square indicates a 10% deviation between the critical relaxation and
the fit for wexp=0.583. The open diamond is the same as in Fig. 2.
The inset shows the mapping of the experimental packing fractions
wexp onto theoretical valueswtheoon the left axis as closed and open
circles for curves shown or left out, respectively. The dotted line
shows the functionwtheo=0.87wexp+0.023. The right axis displays
the vertical scaling factor by crosses.
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closely the critical relaxation fort /tb&2000. The two theo-
retical curves correspond to the ones shown in Figs. 1 and 2,
thus establishing the existence of a window of nearly loga-
rithmic relaxation in the experimental data.

In conclusion, it is shown in Fig. 3 that the mode-coupling
theory is able to describe the mean-squared displacement in a
colloidal hard-sphere systemf11g rather accurately. This im-
plies consistency with both universal laws of MCT and non-
universal MCT predictions for the HSS. Outside the tran-
sient, the data exhibit a window of two orders of magnitude
in time where the relaxation resembles nearly logarithmic
decay or ab-peak phenomenonscf. Fig. 1d. The latter is
found independent of the underlying Brownian dynamics
also for Newtonian dynamicsscf. Fig. 2d, and is distin-
guished from an accidental crossover by an asymptotic ex-
pansion relating it to ab peakscf. Eq.s4dd. Such a dynamical
feature was discovered in molecular systemsf2g and inter-
preted as a consequence of strong translation-rotation cou-
pling f3g. In addition, similar nearly logarithmic decays were
also observed in nematic liquid crystalsf20g. For the hard-
sphere system, while clearly lacking rotational degrees of
freedom, the MSD constitutes another variable that is
coupled strongly to the density fluctuations if the tagged par-
ticle is sufficiently large. It can be inferred from Ref.f12g
that ms0dstd in Eq. s1d becomes smaller when the size of the
tagged particle is chosen smaller than the particles in the host
fluid. A larger particle in turn experiences a stronger coupling
of its MSD to the collective dynamics. As for increasing
rotation-translation coupling inf3g, increasing the diameter
of the particle for which the MSD is measured enhances the
deviation between the underlying collective dynamics and
the coupled variable. The empirical nearly logarithmic law is
part of the critical relaxation and does not change slope when
observed sufficiently close to the transition point. This is in

clear contrast to the logarithmic laws in the vicinity of
higher-order glass-transition singularitiesf4g and can be used
to distinguish both relaxation features. Hydrodynamic inter-
actions present in colloidal suspensions are not included in
Eq. s1d but are known to change the short-time dynamics in
MCT f21g. The quality of the data fit and the validity of the
nearly logarithmic law are therefore surprising and rule out a
significant contribution of hydrodynamic interactions on the
dynamics of the MSD within MCT as shown in Fig. 3. This
is in contrast to other approachesf15,19g. This can be ratio-
nalized by the strong coupling of the MSD to the collective
dynamics causing the MSD for a larger particle to be slower
than for a smaller particlef12g. For the slowest collective
relaxations only small deviations by hydrodynamic interac-
tions have been foundf21g, a result that apparently also ap-
plies to the slow coupled variable MSD.

Equation s4d improves the understanding of glassy dy-
namics in three aspects. First, it comprises a Cole-Cole that
is derived rigorously from microscopic equations of motion
and therefore provides a foundation for data interpretations
as in Ref.f3g. Second, it closes a gap in the understanding of
the MSD close to the glass transitionf14g. Together with the
results from Ref.f12g, MCT providesanalyticaldescriptions
of the dynamics in all subsequent windows in time up to
small crossover regions: The initial ballistic or Brownian dy-
namics is followed by a critical relaxation described by
Eq. s4d, before a plateau 6rs

c2 is reached. After that plateau,
the crossover to the long-time diffusion starts with a
von Schweidler lawt−b whereb=0.583f12g. Third, precise
meaning is given to the finding that strongly coupled vari-
ables do not necessarily show the same dynamics.
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