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Nearly logarithmic decay in the colloidal hard-sphere system
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Nearly logarithmic decay is identified in the data for the mean-squared displacement of the colloidal hard-
sphere system at the liquid-glass transifiéi van Megeret al, Phys. Rev. E58, 6073(1998]. The solutions
of the mode-coupling theory for the microscopic equations of motion fit the experimental data well. Based on
these equations, the nearly logarithmic decay is explained as the equivalenB-peak phenomenon, a
manifestation of the critical relaxation when the coupling between of the probe variable and the density
fluctuations is strong. In an asymptotic expansion, a Cole-Cole formula including corrections is derived from
the microscopic equations of motion, which describes the experimental data for three decades in time.
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The transition of a fluid to a glass is accompanied by acertain characteristic parameters of the the@®. The
dramatic slowing down of the dynamics as the system aptagged particle dynamics was analyzed recently in a
proaches the transition poifit]. The correlation function for computer-simulation study showing good agreement with
some variable\, ¢a(t)=(A"(t)A)/(|Al?), with () denoting ca-  MCT [10].
nonical averaging, decays rapidly, typically within a time A particularly informative quantity to be studied in a
increase by a factor of 10 in the normal fluid regime, while itsystem that shows structural relaxation is the mean-squared

stretches over orders of magnitude in times close to a glas§isplacement (MSD), which is defined by &r&(t)
transition. Simultaneously nontrivial dynamical features such-|r(t)-(0)|2) with f(t) denoting the position of a particle at

as power-law decay and unconventional scaling are obgnq¢ The MSD is studied frequently in computer simula-
served. The characterization and explanation of these Siangs,, 3 was measured for nine decades in time in a colloidal
tures of the glass transition present challenges to experimen uspensiofil1]. In this paper, the MSD will be calculated for
computer simulation, and theory alike. One such feature i 6 HSS withiﬁ MCT in ordér t0 show that for a state near

the nearly logarithmic decay of the correlation function, he ition there i ind f decades in ti
which was discovered recently in the orientational correla{N€ 91ass transition there is a window of two decades In time

tion function by optical-Kerr-effectOKE) measurements in  ©f nearly_l?garithmic relaxation. This will be done by iden-
molecular liquids[2]. The response function measured in tifying at™ decay of the derivative of the MSD in complete
these experiments is proportional to the negative time deriva@nalogy to the procedure used for the analysis of the corre-
tive of the correlation function, so a measured nearly ~ sponding result for the OKE daf@]. Second, by asymptotic
decay is equivalent to a nearly logarithmic relaxation insolution of the MCT equations, a modified Cole-Cole law
oa(t). In a subsequent fit it was shown that the data can baill be derived for the description of the critical decay of the
well described by a schematic model within the mode-MSD. This analytical formula explains the nearly logarith-
coupling (MCT) theory for ideal glass transitior{8]. The  mic regime and accounts for the critical decay for three de-
nearly logarithmic decay was interpreted ag-feak phe- cades in time. Third, it will be shown that the MCT solutions
nomenon of the short-time critical relaxation when theat the critical point describe the experimental resulffif]
rotation-translation coupling is sufficiently large. Different for five orders of magnitude in time. Fourth, the full range of
from earlier suggestions, the presence of higher-order glag¥vailable experimental data for the MSD is described reason-
transitions, as in systems with very short-ranged attractiongbly by the numerical solutions of the MCT equations going
[4], could be ruled out as a cause for the nearly logarithmideyond the universal laws. Thus nearly logarithmic decay
decay in molecular systems. Similar OKE data were fitted byaws known from molecular systems gspeak phenomenon

a kinetically constrained modg5. are established in a colloidal system.

Schematic models are truncated versions of the full MCT Slow dynamics within MCT originates from a singularity
equations of motion that share the mathematical structur#h the long-time behavior of the collective density fluctua-
and universal properties of the latter but do not contain mitions [8]. Other variables share that behavior if they are
croscopic detail§6]. Instead, a number of parameters in thecoupled to the density fluctuations. While the coupling to
schematic models need to be fitted. In the microscopic equdotational motion was modeled by an empirical parameter in
tions, these parameters are completely determined by tH&l, the MSD for a colloidal system is given by a micro-
number densityy=N/V for a system oN particles in a vol- ~ scopic equation of motion bj12],
umeV, and the static structure fact&; given by the inter- ;
action potentl_al[6—8]. In the foIIQW|ng, a system of hard S2(t) + Déf dt'mO(t - t')ar(t’) = 6D, (1a)
spheres of diameted shall be discussed, where the only 0
control parameter is the packing fractigr mpd®/6. Predic-
tions for the hard-sphere systgiiSS can be tested in col- Wwith the short-time diffusion coefficienD3. The memory
loidal suspensions, and the results for collective density fluckernel m(t) is determined by the static structure of the
tuations demonstrate the universal laws of MCT and verifyliquid and collective and single density correlation functions.
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FIG. 1. (Color online) Time derivative of the mean-squared
displacemenD(t) in the hard-sphere system for packing fractions
e=¢° and ¢=0.5145 (full lines from left to righ). The upper
dashed line is proportional to!. The lower dashed curve repre-
sents the approximation by E¢4). The dotted line displays the
critical lawt™2"1. Here and in Fig. 2 the unit of time is fixed by the
short-time diffusion coefficientDj/d?=1/160. The inset shows
D(t) for ¢=¢° on a linear scale for comparison.

FIG. 2. (Color online) Mean-squared displacement at the criti-
cal point in the hard-sphere system for Newtonilin chain curve
and Brownian(B, full curve) dynamics. The short horizontal line
displays the plateaur§2. The dashed lines show the asymptotic
approximations by Eq$2) (labeledt™??) and(4). The leading-order
approximations are shown dotted for Eg) (t™2) and Eq.(4) (cc).
The nearly logarithmic relaxation is shown by the straight dashed
line labeled Int. The diamond and the square indicate 10% devia-

The structure factor is calculated using the Percus-Yevickions of B from the approximation by Ed4) and the solution for
approximation(PYA) [7]; details of the numerical solution $=0-5145, respectively.

are outlined elsewhergl2]. For ¢ below the critical point

¢°=0.5159, the long-time solution of Eqla) is diffusive, t

Sr2(t)=6D%, with a long-time diffusion coefficienD® de- 3t&2(t)+v§f dmOt-t)or¥(t') = 6vt,  (1b)
pending on the distance from the critical point. koe ¢, 0
the long-time solution is arrested at a plateaﬁ(t):6r§,
with a localization lengthrg. The derivative of the MSD can
be interpreted as a time-dependent diffusion coefficient
6D(t)=d[ &r2(t)/d?]/dt, that goes to zero as the glass transi-

tion is approached13]. D(f) calculated from Eq(13) is the beginning of the regime for structural relaxation at

plotted for ¢=0.5145 andp=¢° as full lines in Fig. 1. The - L :
dynamics when approaching the critical point shares mortlaoglot 0[14]. The nearly logarithmic decay is shown as the

and more of the relaxation af as seen fo=0.5145 for nearly linear increase of the MSD with légutside the tran-
log,ot<1. This portion of the dynamics is therefore referredls.'em wghmlthe same time Iinterval as marked by the dashed
to ascritical relaxation For times exceeding the critical re- 'n?l_'nf :tgh r. nalvze the window of nearly loaarithmic
laxation, the dynamics crosses over to the long-time diffu- 0 luriner-analyze the ow ol nearly loga c re-
sion as seen fop=0.5145 around logt~2. The most sig- laxation and in an attempt to distinguish it from a further

nificant finding in connection with Fig. 1 is the appearance of2Pproximation to a power law with a very small exponent as

a window in time after the transient where the dynamicsIn [15], asymptotic expansions shall be applied. At the criti-

follows closely at™* law for O<log,t=<2. A comparison of cal point, the MSD can be expanded in power laws and reads
the solution forg=0.5145 With the critical decay shows that [12]
the major fraction of the™ decay is part of the critical 2 —c2 _ -a -2a
relaxation. This decay reflects the same behavior as found in ()16 =rg" — hysp(t/ty) ™ + hyspKusp(t/to) ™, (2)
molecular liquids, moreover, the decay observed in Fig. 1 isvhere the first two terms on the right-hand side constitute the
closer tot™! than for most of the OKE data whet is seen  leading-order result. The values for the HSS &re0.0746,
with x ranging from 0.8 to 1.152,3]. The long-time decay at hyg5p=0.0116,K,5p=—1.23,t;=0.425,A=0.735. The lead-
the critical point is &2 law with a=0.312 for the HSS. This ing and next-to-leading order results of Eg) are shown as
law is shown as the dotted straight line of slopd +a). It  dotted and dashed lines in Fig. 2 and describe the full solu-
accounts for the critical decay only for lgg=3, is pre- tions only fort=1000 andt=100, respectively. As will be
ceeded by thet™? decay, and has no relevance fgr  shown below, the leading order fails to apply in the experi-
=0.5145. mentally relevant window, while including the correction
The nearly logarithmic decay is found adjacent to thestill does not explain more than one decade of structural
transient for the Brownian colloidal system as for the New-relaxation.
tonian molecular systeni8]. For the HSS also, Newtonian In the following, an asymptotic solution is derived that is
dynamics can be considered and the equivalent of(Eg. based on the expansion of the memory kernel. For long
reads[14] times, the equations of motion for the MSD are the same for

with the thermal velocity)§ for a tagged particle. Figure 2
shows the solution for the MSD for Newtonian and Brown-
ian dynamics forp=¢° Both solutions can be matched at
long times and they overlap down #@?(t)~0.01 defining
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both Newtonian and Brownian dynamip8,14], and can be
represented with the modified Laplace transfashi(t)](z)
=iz[odtexdizt]f(t) as

Slor?(v1(2 = 3)

5
SIm21@

An asymptotic expansion for the memory kernel equivalent |

to the one in Eq(2) is given bym@(t)=f o +ho(t/ty) 2
+hroKno(t/tg) 2, with £ =1/r&, hyo=hysp/rs, Kyo
=Kysp+tAhysp/r%, and A=T'(1-a)?/T(1-2a) with the
Euler gamma functiorl'(x). In the Laplace domain, this
can be written with a characteristic frequeney, as
SIMO(1)1(2) =7 of L +(=iz/ wp)?+Kffsp(-iz/ wp)?},  where
Kirso=froKmo/ (hmo)). Hence, Eq(3) reads up to next-to-
leading order
6re2

2 _ S
Strfnl@ =7 (- izl wp)® + Ko~ izl

4)

2a’

and the characteristic frequency is given by

1|: rgz 1 ]1/a
wﬁ: - .
to[ hmspl'(1-a)
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FIG. 3. (Color online) Fit of the mean-squared-displacement
data from[11] (full circles and curvesby the solutions of mode-
coupling theory(dashedl The dotted curve displays the theoretical
result at the critical point and is equivalent to cué@ Fig. 2. The
square indicates a 10% deviation between the critical relaxation and
the fit for ¢**P=0.583. The open diamond is the same as in Fig. 2.
The inset shows the mapping of the experimental packing fractions
P onto theoretical valueg"®°on the left axis as closed and open
circles for curves shown or left out, respectively. The dotted line
shows the functionpe°=0.87,"+0.023. The right axis displays

For the HSS we gethw,z=0.038 95. The leading-order result the vertical scaling factor by crosses.

in Eq. (4) is obtained forK{;5p=0, and is known as Cole- o
. ) Lo al2%
Cole law. For different variables a similar result was Ob'This di

tained beford3,16]. While the correction in E¢(2) is com-

higher packing fraction than predicted in Re8s12].
screpancy could be reduced to below 10% by using
the actual structure factor rather than the PYA in a computer

parably large,Kysp=-1.23, the analogous result for the gjmylation [18], but a remaining error from the mode-

memory kernel is only a fraction of ik, =0.30. The cor-
rection in Eq.(4) is even smallerK{;sp=0.196. As the cor-

coupling approximation has to be accepted. This is similar to
other approaches fitting the ddtE9]. Therefore, theoretical

rections determine the range of validity_ for the leading termsyalues fore are mapped on experimental ones by comparing
of the asymptotic expansions, the leading-order result of Eqthe diffusivity in experiment and theory. The result of this

(4) is superior to the leading-order result of EB) as seen in
Fig. 2, where already the leading order of Ed). describes

procedure is shown in the inset of Fig. 3 by circles. The
mapping is fitted byp"e°=0.87x°*P+0.023, which is remark-

qualitatively the complete relaxation. Including the correc-aply similar to what was found from a computer simulation
tion explains the complete window of structural relaxation asof the HSS[10], and extrapolates to a critical densigf
seen by the diamond marking a 10% deviation of the ap~0.57. The highest values @ do not follow that linear

proximation by Eq(4) from the solution of Eq(1a). A com-

mapping. This is due to aging for lggt/ 7,=4, where the

parison in Fig. 1 shows that E(f) also covers the complete experiment is no longer fully equilibratgd1,17. The dy-

regime of nearly logarithmic decay. Fgr=0.5145,D(t) in
Fig. 1 and the MSD in Fig. 2 is described by Ed) for

namics before aging sets in, and hence the regime for nearly
logarithmic relaxation, is not affected significantly by aging

log;ot=3. The crossover from the critical decay to the long-[17]. Third, as the actual transition takes place at a higher
time diffusion yields an extended window in time wheré In packing fraction than theory predicts, a smaller localization

fits the solution.

Figure 3 shows the data fromi1] in units of the particle
radius R=d/2 and the Brownian time scale,=R?/(6Dg)
together with the solutions of Eqla) for different values of

length and hence a vertical shift of the curves by a prefactor
a,—shown by crosses in the inset of Fig. 3—can be ex-
pected. Surprisingly, many curves are described well using
a,=1. The variation ofa, yields an error estimate for the

¢. The agreement is rather satisfactory considering that albcalization length of around 20% for the localization length

coupling parameters are fixed microscopically. Three adjustas compared to the theoretical results. If only data close to
ments need to be made to match experimental and theoreticdle glass transition is considered, the data show indeed a
curves. First, the short-time diffusion coefficient sets ansmaller localization length than predicted. After these adjust-
overall time scale that needs to be accounted for. The theanents, Eq.(1a) fits the data for different packing fractions
retical solutions are matched to the data forjdgs-1. As  over the entire experimental range of up to nine orders of
the experimental curves do not fall on top of each other ifTmagnitude in time.

that regime, the chosen time scale also needs to vary by a The curve¢®P=0.583 is fitted bye°=0.5146, and in
factor up to 2. Second, witk®~0.58[11,17, the experi- addition, the critical relaxation fop"®°= ¢° is matched with
mental glass transition in the HSS is found at approximateltthe same prefactors and shown dotted. The data follow
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closely the critical relaxation fot/ 7, < 2000. The two theo- clear contrast to the logarithmic laws in the vicinity of
retical curves correspond to the ones shown in Figs. 1 and higher-order glass-transition singularitigd and can be used
thus establishing the existence of a window of nearly logato distinguish both relaxation features. Hydrodynamic inter-
rithmic relaxation in the experimental data. actions present in colloidal suspensions are not included in
In conclusion, it is shown in Fig. 3 that the mode-coupling EQ. (1) but are known to change the short-time dynamics in
theory is able to describe the mean-squared displacement infMCT [21]. The quality of the data fit and the validity of the
colloidal hard-sphere systefa1] rather accurately. This im- nearly logarithmic law are therefore surprising and rule out a
plies consistency with both universal laws of MCT and non_S|gnn°|<:_ant contribution o_f hydrodynamlc mter_actpns on t_he
universal MCT predictions for the HSS. Outside the tran-dynamics of the MSD within MCT as shown in Fig. 3. This
sient, the data exhibit a window of two orders of magnitude'S '" contrast to other approachkis, 19. This can be ratio-

in time where the relaxation resembles nearly IOgarithmia&sggfrﬁjicbsyct:lfs?rfgotnhgeCl\(/I)gFIJD”?gr(zafIrr?;el\:ligrtﬁgléhs) %Oellgﬁ;[ixgr
decay or ag-peak phenomenofc. Fig. 1. The latter is than for a smaller particl€12]. For the slowest collective

found independent of the underlying Brownian dyr“"‘rn'cs‘relaxa'[ions only small deviations by hydrodynamic interac-

aIsp for Newtonian Qynam|c$cf. Fig. 2, and is d|st|r)- tions have been foun®1], a result that apparently also ap-
guished from an accidental crossover by an asymptotic e’%lies to the slow coupled variable MSD.

pansion relatin_g itto 8 pe_ak(cf. Eqg.(4)). Such a dyngmical Equation (4) improves the understanding of glassy dy-
feature was discovered in molecular systei@band inter-  pamics in three aspects. First, it comprises a Cole-Cole that
preted as a consequence of strong translation-rotation Coys gerived rigorously from microscopic equations of motion
pling [3]. In addition, similar nearly logarithmic decays were 5 therefore provides a foundation for data interpretations
also observed in nematic liquid crystd0]. For the hard- o5 iy Ref[3]. Second, it closes a gap in the understanding of
sphere system, while clearly lacking rotational degrees of,o \1sp close to the glass transitipt4]. Together with the
freedom, the MSD constitutes another variable that iSegits from Ref[12], MCT providesanalytical descriptions
coupled strongly to the density fluctuations if the tagged parys the gynamics in all subsequent windows in time up to
ticle |s(o)suff|C|entIy large. It can be inferred from ReL2]  gmq) crossover regions: The initial ballistic or Brownian dy-
thatm™(t) in Eq. (1) becomes smaller when the size of the namics s followed by a critical relaxation described by
tagged particle is chosen smaller than the particles in the hogq_ (4), before a plateaur®’ is reached. After that plateau
fluid. A larger particle in turn experiences a stronger couplinghe crossover to the long-time  diffusion starts with a
of its MSD to the collective dynamics. As for increasing yon schweidler lawt™ whereb=0.583[12]. Third, precise

rotation-translation coupling ifi3], increasing the diameter neaning is given to the finding that strongly coupled vari-
of the particle for which the MSD is measured enhances thepes do not necessarily show the same dynamics.

deviation between the underlying collective dynamics and

the coupled variable. The empirical nearly logarithmic law is  This work was stimulated by discussions with H.Z. Cum-
part of the critical relaxation and does not change slope whemins, M. Fuchs and W. Goétze, and supported by the DFG
observed sufficiently close to the transition point. This is inSFB 513 and the DFG Grant No. SP 714/3-1.

[1] W. Kob, in Slow Relaxations and Nonequilibrium Dynamics in [10] T. Voigtmann, A. Puertas, and M. Fuchs, Phys. Rev/E
Condensed Matteredited by J.-L. Barrat, M. Feigelman, J. 061506(2004.
Kurchan, and J. Dalibar@pringer, Berlin, 2008 p. 199. [11] W. van Megen, T. C. Mortensen, S. R. Williams, and J. Miiller,
[2] G. Hinze, D. D. Brace, S. D. Gottke, and M. D. Fayer, Phys. Phys. Rev. E58, 6073(1998.

Rev. Lett. 84, 2437 (2000; 84, 4783EF) (2000; J. Chem. 151\ ‘pychs, W, Gotze, and M. R. Mayr, Phys. Rev5B, 3384
Phys. 113 3723(2000; M. Ricci, P. Bartolini, and R. Torre, (1998

Philos. Mag. B82, 541(2002; H. Cang, V. N. Novikov, and [13] P. N. Segré and P. N. Pusey, Phys. Rev. L&®. 771(1996.

';,"r']yz Eagye;{,g()p(;.gg.();ev. Letto0, 197401(2003; J. Chem. ) s 1y Chong, W. Gétze, and M. R. Mayr, Phys. Rev.6&
[3] W. Gétze and M. Sperl, Phys. Rev. Le82, 105701(2004). 011503(2003. , ,
[4] M. Sperl, Phys. Rev. E68, 031405(2003; F. Sciortino, P. |15 M. Tokuyama, Y. Terada, and I. Oppenheim, Physic3@v,

Tartaglia, and E. Zaccarelli, Phys. Rev. Le@1, 268301 27 (2002.
(2003. [16] W. Gotze and L. Sjogren, J. Phys.: Condens. Mafte#183
[5] L. Berthier and J. P. Garrahan, J. Phys. Cheml1®, 3578 (1989.
(2005. [17] N. B. Simeonova and W. K. Kegel, Phys. Rev. Lef3,
[6] W. Gotze, inLiquids, Freezing and Glass Transitipedited by 035701(2004.
J. P. Hansen, D. Levesque, and J. Zinn-Judtiorth Holland,  [18] G. Foffi, W. Gétze, F. Sciortino, P. Tartaglia, and T. Voigt-
Amsterdam, 1991 p. 287. mann, Phys. Rev. 69, 011505(2004).
[7] J.-P. Hansen and I. R. McDonald@heory of Simple Liquids [19] M. Tokuyama, H. Yamazaki, and Y. Terada, Phys. Re\6 &
2nd ed.(Academic, London, 1986 062403(2003; M. Tokuyama, Physica A289, 57 (2001).
[8] U. Bengtzelius, W. Gotze, and A. Sjolander, J. Physl1T [20] H. Cang, J. Li, V. N. Novikov, and M. D. Fayer, J. Chem.
5915(1984. Phys. 119 10421(2003.
[9] W. van Megen, Transp. Theory Stat. Phyl, 1017(1995. [21] M. Fuchs and M. R. Mayr, Phys. Rev. &0, 5742(1999.

060401-4



